- -

## Enantioselective Conjugate Addition of Diethylzinc to Chalcone Catalyzed by Chiral Tricarbonyl(arene)chromium/Nickel (II)

Motokazu Uemura,\* Ryuta Miyake, Kazuo Nakayama, and Yuji Hayashi

Faculty of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558, Japan

(Received 7 May 1992)

Abstract: Enantioselective conjugate addition of diethylzinc to chalcone in the presence of Ni(acac)<sub>2</sub> complexed with chiral tricarbonyl(1,2-disubstituted arene)chromium gave addition products with up to 78 % ee depending upon the amounts of Ni(II) and chiral arene chromium complexes.

There has been great interest in catalytic enantioselective conjugate addition of organometallic reagents to prochiral enones. Chiral  $\beta$ -amino alcohols and the related compounds have been recently proven to be effective ligands for asymmetric synthesis of optically active  $\beta$ -substituted ketones catalyzed by the presence of transition metals.<sup>1,2</sup> In a continuation of our studies into the asymmetric reactions<sup>3</sup> of chiral (1,2-disubstituted arene)chromium complexes possessing both benzylic amino and hydroxy groups ( $\delta$ -amino alcohols), we wish to describe herein the enantioselective conjugate addition of diethylzinc to chalcone.

The chiral (1,2-disubstituted arene)chromium complexes 3-5 as the ligands were prepared stereoselectively from tricarbonyl(N,N-dimethyl  $\alpha(R)$ -phenylethylamine)chromium according to the reported procedure.<sup>4</sup> The reaction conditions and results for the Ni(II)-catalyzed enantioselective conjugate addition reactions are summarized in Table 1. Reaction of chalcone with 2 eq of diethylzinc in the presence of nickel catalyst, generated in situ by mixing 1 mol % of Ni(acac)<sub>2</sub> and 10 mol % of the ligand 3 (R = Ph) with phenyl substituted (S)-configuration at the  $\alpha$ '-position possessing benzylic hydroxy group, gave (R)-1,3-diphenylpentan-1-one (2) with 36 % ee (entry 1). The asymmetric induction is highly dependent on the amount of chiral catalyst. The



enantioselectivity increased to 62 % ee when 5 mol % of the catalyst was used. Stoichiometric conditions gave 78 % ee of the conjugate addition product (entry 3). From the results, the phenyl substituted chiral ligand 3 (R = Ph) was found to be effective for high enantioselective conjugate addition, regardless of the chiral  $\delta$ -amino alcohol.  $\alpha'(S)$ -Ethyl substituted chromium complex 3 (R = Et), an efficient ligand for the enantioselective addition of diethylzinc to benzaldehyde,<sup>3</sup> resulted in lower selectivity. With a stereoisomeric  $\alpha'$ -(R)-ethyl substituted complex 4 (R = Et) gave low enantioselectivity of the same (R)-product (entry 7). Disubstituted complex 5 with phenyl substituted complex 5 (R = Et) produced racernic product under stoichiometric conditions (entry 8). Diethyl substituted complex 5 (R = Et) produced racernic product under catalytic conditions, but a use of stoichiometric amount of the ligand and Ni(II) increased to up 37 % ee.

Since it is easily possible to modify the chiral ligands (e.g.; conversion of one of tricarbonyl to other group or modification of the phenyl ring at the  $\alpha$ '-position), it seems that there is plenty of room for further improvement in this class of the chiral (arene)chromium complexes.

| entry | (η <sup>6</sup> -arene)Cr(CO) <sub>3</sub> | mol %<br>Ni(acac)2 | ratio of<br>Ni(II) : chiral ligand | yield (%) <sup>b</sup> | % ee <sup>c</sup><br>(config) |
|-------|--------------------------------------------|--------------------|------------------------------------|------------------------|-------------------------------|
| 1     | 3 (R = Ph)                                 | 1                  | 1:10                               | 66                     | 36 (R)                        |
| 2     | 3 (R = Ph)                                 | 5                  | 1:10                               | 90                     | 62 (R)                        |
| 3     | 3 (R = Ph)                                 | 100                | 1:1                                | 70                     | 78 (R)                        |
| 4d    | 3 (R = Et)                                 | 7                  | 1:2.5                              | 78                     | 26 (R)                        |
| 5     | 3 (R = Et)                                 | 5                  | 1 : 10                             | 91                     | 43 (R)                        |
| 6     | 3 (R = Et)                                 | 100                | 1:1                                | 73                     | 53 (R)                        |
| 7     | 4 (R = Et)                                 | 100                | 1:1                                | 78                     | 50 (R)                        |
| 8     | 5 (R = Ph)                                 | 100                | 1:1                                | 71                     | 62 (R)                        |
| 9     | <b>5</b> ( $R = Et$ )                      | 5                  | 1:10                               | 92                     | 1 ( <b>R</b> )                |
| 10    | 5 (R = Et)                                 | 100                | 1:1                                | 70                     | 37 ( <b>R</b> )               |

Table 1 Asymmetric Conjugate Addition of Diethylzinc to Chalcone<sup>a</sup>

<sup>a</sup> All conjugate addition reactions were carried out with 2 eq of diethylzinc at -30 °C for 18 h in acetonitrile in the presence of the chiral catalyst which was prepared in situ by mixing Ni(acac)<sub>2</sub> with the chiral (arene)chromium complex in acetonitrile at room temperature for 1 h. <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Determined by HPLC (Daicel Chiralcel OD, Eluent 0.2 % 2-propanol in hexane). <sup>d</sup> Presence of 7 mol % of 2,2'-dipryridyl.

## **References and Notes**

- (a) Soai, K.; Hayasaka, T.; Ugajin, S. J. Chem. Soc., Chem. Commun. 1989, 516; Soai, K.;
  Yokoyama, S.; Hayasaka, T.; Ebihara, K. J. Org. Chem. 1988, 53, 4149; Soai, K.; Hayasaka, T.;
  Ugajin, S.; Yokoyama, S. Chem. Lett. 1988, 1571. (b) Bolm, C.; Ewald, M. Tetrahedron Lett. 1990, 31, 5011.
- (a) Villacorta, G. M.; Rao, C. P.; Lippard, S. J. J. Am. Chem. Soc. 1988, 110, 3175. (b) Jansen, J. F. G. A.; Feringa, B. L. J. Org. Chem. 1990, 55, 4168. (c) Ahn, K-H.; Klassen, R. B.; Lippard S. J. Organometallics, 1990, 9, 3178.
- 3 Enantioselective addition of diethylzinc to benzaldehyde; Uemura, M.; Miyake, R.; Hayashi, Y. J. Chem. Soc., Chem. Commun. 1991, 1696.
- (a) Blagg, J.; Davies, S. G.; Goodfellow, C. L.; Sutton, K. H. J. Chem. Soc., Perkin Trans 1, 1987, 1805; (b) Heppert, J. A.; Aubé, J.; Thomas-Miller, M. E.; Milligan, M. L.; Takusagawa, F. Organometallics, 1990, 9, 727; (c) Uemura, M. Miyake, R.; Shiro, M.; Hayashi, Y. Tetrahedron Lett. 1991, 4569.